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CHAPTER 1

1.1 Multi-Modal Representation Learning

Electronic Health Records (EHR) are comprehensive digital records that capture
detailed information about a patient's health. These records include both structured
data, such as demographics, vital signs, and lab test results, as well as unstructured
data, like clinical notes and reports. EHR systems are widely used today for efficient
and effective management of health records [1]. For instance, the U.S. healthcare
system serves over 30 million patients annually, and the adoption of basic EHR
systems by non-federal acute care hospitals significantly rose from 9.4% in 2008 to
83.8% in 2015 [2]. As of 2021, 78% of office-based physicians and 96% of non-
federal acute care hospitals have adopted certified EHR systems [3]. Given this
widespread usage, EHR databases now contain vast amounts of data, providing an
invaluable resource for healthcare researchers to conduct data-driven studies aimed at
improving patient outcomes [4].

Recent advancements in machine learning and deep learning have sparked interest in
leveraging EHR data for healthcare applications [10–12]. These techniques show great
potential for extracting valuable insights from EHRs, aiding in the accurate prediction
of clinical outcomes like mortality [13] and readmission [13,14]. Predicting such
outcomes can facilitate the early detection of patient deterioration [15], which
supports more efficient nursing workflows. Many research studies have used deep
learning to build predictive models based on EHR data, typically using vital signs, lab
results, diagnostic histories, and medication information. However, unstructured data
from sources such as clinical notes and radiology reports, available during patient
admissions, could further enhance these models. As such, utilizing multimodal data
from various sources during the prediction process can intuitively improve model
performance.

In this study, we focus on integrating multimodal data—including clinical time series,
chest X-ray radiographs (CXR), radiology notes, and ECG data—within a general
fusion framework to enhance predictions of in-hospital mortality, extended length of
stay, and 30-day readmission rates. We conduct ablation studies on various modality
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combinations to investigate the impact of modality misalignment. The model is
trained and tested using the extended MIMIC-MM dataset, which combines data from
MIMIC-IV, MIMIC-CXR, MIMIC-IV-Note, and MIMIC-ECG datasets [5–8], while
addressing missing modalities.

In summary, the key contributions of this work are:
● We propose a multimodal fusion framework that handles missing modalities,

combining clinical time series (e.g., vital signs, lab results) with CXR images,
radiology notes, and ECG data in EHR.

● We perform experiments on different modality combinations and use
oversampling to study the effects of modality alignment, proposing solutions
to address misalignment.

1.2 DDP Optical Flow Estimation
Optical flow estimation refers to the task of determining the apparent motion velocities
of brightness patterns between two images, typically consecutive frames in a video, at
the pixel level. This process is crucial in various computer vision applications, such as
action recognition [29], video denoising [40], and frame interpolation [31]. As a
fundamental vision task, optical flow estimation has been extensively studied over the
past few decades, with two primary approaches emerging. Traditional methods, such
as Lucas-Kanade [30] and Gunner-Farneback [34], formulate optical flow as an
optimization problem between two images, producing a sparse or dense displacement
map that aligns similar visual patterns.

In contrast, deep neural networks (DNNs) have recently demonstrated remarkable
success in learning pixel-level tasks such as super-resolution [35], [36], semantic
segmentation [15], image deblurring [41], image generation [22], and stylization [21].
DNNs have also been employed for optical flow estimation from consecutive frames
[25], [28], [33], [47], achieving state-of-the-art performance on benchmark datasets
like KITTI 2015 [16] and MPI Sintel [8]. However, a key challenge for DNN-based
methods is the significant performance drop when models trained on one data
distribution are applied to another. This distribution shift issue is particularly critical
for DNN-based optical flow models during testing. Unlike humans, who can perceive
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motion but struggle with accurately estimating motion vectors, capturing precise
ground-truth optical flow in natural videos would require tracking 3D pixel trajectories,
which is impractical for real-world scenarios.

This research aims to develop an optical flow model using Distributed Data Parallel
(DDP) optimization across multi-GPU and multi-node setups. By leveraging Lightning-
Fabric for distributed processing, the study explores advanced training techniques,
including Fairscale's CPU offloading, mixed-precision training, and activation
checkpointing, to maximize batch sizes and optimize large-scale optical flow models.
Additionally, it investigates a test-time adaptation (TTA) algorithm to enhance model
performance on unseen data by refining the optical flow map through iterative updates.
The main objectives of the research are:

● To improve training efficiency for optical flow models through distributed
training and memory optimization.

● To evaluate performance trends of optical flow estimation in multi-GPU
environments.

● To create a test-time adaptation algorithm that enhances the model's
generalization to new data by minimizing variance between original and
augmented optical flow maps.
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CHAPTER 2

2.1 Multi-Modal Representation Learning
Medical datasets comprise large collections of patient health records from hospitals,
typically including various health-related aspects such as demographic data, lab tests,
vital signs, medical images, diagnosis codes, notes, treatment and medication histories,
and discharge summaries. Researchers in the medical field have increasingly applied
machine learning techniques to various tasks, including medical predictive modeling,
recommendations, disease diagnosis, and outcome prediction.

2.1.1 Research on EHR Time Series Variables:

Several studies have focused on leveraging time series data in electronic health records
(EHR) for predictive modeling. RETAIN [10] used reversed time attention produced
by RNNs to generate visit- and variable-level attention scores for embedding vectors
of clinical time series. It incorporates diagnoses, medications, and procedures to form
input vectors. Similarly, Dipole [16] employs a bidirectional RNN to combine multi-
visit embeddings, while Med2Vec [11] learned visit-level representations from EHR
by analyzing visit sequences and medical code co-occurrences. Med2Vec's
representation was tested by predicting future medical codes and Clinical Risk Group
(CRG) levels. BERT-based frameworks, such as Med-BERT [12], BEHRT [17], and
G-BERT [18], have also been utilized for EHR feature extraction, particularly in
diagnosis code and medication prediction tasks. G-BERT additionally incorporates the
hierarchical structure of ICD-9 codes to improve embeddings. Ashfaq et al. [14] applied
LSTM on learned EHR embeddings to predict 30-day readmission rates.

2.1.2 Research on Multimodal Data Input:

Medical datasets are multimodal, including data types like time-series variables (e.g.,
lab tests and vital signs), medical images, and unstructured text from clinical notes.
Combining complementary information from different data sources holds great
potential [19]. Zhang et al. [13] integrated time series data with unstructured clinical
notes from MIMIC-III using LSTM and CNN for sequential feature extraction to
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perform predictive modeling. Golovanevsky et al. [20] combined clinical test scores,
genetic data (SNPs), and MRI images to diagnose Alzheimer's disease, employing
cross-modal attention and self-attention modules to capture intra- and inter-modality
correlations. Huang et al. [21] utilized Electronic Medical Records (EMR) and CT scan
images to detect pulmonary embolism, with late fusion showing superior performance
over other fusion methods. Yao et al. [22] concatenated selected clinical features with
3D CT image features from CNN for predicting pulmonary venous obstruction (PVO)
and used a saliency map to identify the areas of focus in the model. Yan et al. [23]
conducted breast cancer classification by combining pathological images and 29
selected features. They concatenated hidden states from CNN layers as image features,
used a denoising autoencoder for EMR features, and combined both for classification.
Nie et al. [24] integrated multi-channel medical images, demographic data, and tumor-
related features to predict short overall survival (OS) time. Soenksen et al. [25] proposed
an early fusion model that integrates tabular data, time series, text notes, and chest X-
rays for diagnosing chest pathology, predicting length of stay, and forecasting 48-hour
mortality. Many studies utilizing more than two modalities neglect robust cross-modal
alignment techniques. When alignment is attempted, it often lacks thorough analysis of
its impact. Most evaluations rely heavily on AUROC and AUPRC metrics, with scant
attention to F1 scores, which commonly fall below 0.7, often within the 0.5 to 0.6 range,
indicating subpar balanced precision and recall. ECG data is infrequently integrated
with other modalities in existing research and has not been adequately tested for the
tasks addressed in this study. This may stem from its limited suitability for certain tasks,
as the observed low variance in ECG data could restrict its contribution to meaningful
multimodal fusion. In our study we perform ablation to understand this further.

2.2. DDP Optical Flow Estimation
Optical flow prediction is a crucial task in computer vision that involves estimating the
motion of objects between consecutive video frames at the pixel level. This technique
enables applications such as motion tracking, object detection, and video stabilization.
The KITTI dataset, one of the most widely used benchmarks for optical flow research,
provides a diverse collection of real-world driving scenes captured from a moving
vehicle. It includes ground truth optical flow data, allowing researchers to evaluate and
compare the performance of various optical flow estimation algorithms. The dataset's
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challenging conditions, such as occlusions and varying lighting, make it an essential
resource for developing robust models that can generalize well to real-world scenarios.

2.2.1. Optical Flow Estimation

Traditional optical flowmethods often adopt a variational framework, solving an energy
minimization problem to align brightness patterns and enforce regularities in the flow
field. Since the foundational work by Lucas et al. [30], this approach has seen significant
success, further improved by techniques like coarse-to-fine refinement and descriptor
matching [36], [37], [43], [44]. However, these methods typically target short-range
motion and struggle with incomplete correspondences, making them less effective for
large motions and real-world scenarios with occlusions.

Data-driven approaches to optical flow estimation have grown with the advent of deep
learning. Dosovitskiy et al. [14] introduced FlowNet, the first DNN-based model
capable of directly predicting dense optical flow maps from image pairs. FlowNet's
success, achieved without complex optimization steps, spurred extensive research into
DNN-based optical flow methods [25], [28], [33], [41], [47]. Recent models like RAFT
[48] have surpassed traditional methods [29] on standard benchmarks [8], [16]. Despite
varying architectures, these models are typically trained using supervised learning on
large-scale synthetic datasets before being fine-tuned on smaller, real-world datasets.
This reliance on synthetic data limits the practicality of these methods in real-world
applications, where obtaining ground-truth optical flow for even a few videos is
difficult. Furthermore, without fine-tuning on the target data distribution, these models
are prone to distribution shift at test time.

Unsupervised learning methods for optical flow, such as SelFlow [39], SMURF [59],
and MDFlow [62], have emerged as alternatives, requiring no annotated optical flow
for training. However, they still assume that the training videos share a similar
distribution with the test data, which may not hold in practice as test data distributions
can evolve. In contrast, our method relies solely on test data information to adjust the
model, making it more practical for real-world applications.
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2.2.2 Test-Time Adaptation

Test-time adaptation (TTA) refers to techniques that adjust a model based solely on the
unlabeled test sample at test time, enhancing the model’s performance on out-of-
distribution data. A crucial aspect of TTA is designing a self-supervised learning task
based on the test sample. Shocher et al. [42] introduced a sample-specific super-
resolution model, where the task was to upscale a downscaled version of the test image
back to its original resolution. Similarly, Chi et al. [53] proposed an auxiliary task of
reconstructing a blurry input image from deep features to adapt the model to each test
sample. Other approaches, such as those by Sun et al. [46] and Wang et al. [54], focus
on improving image classification robustness by predicting rotation angles or
minimizing prediction entropy, respectively. In this study, we propose the first TTA
framework specifically for optical flow estimation models, designing a self-supervised
task based on representations from compressed video data.
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CHAPTER 3

3.1 Multi-Modal Learning Framework

3.1.1 Dataset Description
In this study, we employed a multi-modal representation learning approach using
clinical data sourced from various modalities:

1. Electronic Health Records (EHR)
1.1. Demographic Data: This includes tabular and categorical variables such

as race and age. Notably, age was discretized into groups due to deidentification,
which rendered numerical inaccuracies while maintaining relative correctness.

1.2. ICU Vitals: Comprising time-series signals alongside categorical time-
series data (e.g., categorical events such as procedures), we selected 39 vitals from
approximately 100 available.
2. Chest X-rays (CXR): A series of chest X-ray images were included, representing
time-series data.
3. Electrocardiograms (ECG): This modality consisted of a series of 12-lead ECG
signals, characterized as time-series of time-series data across 12 dimensions.
4. Clinical Notes: These encompass discharge summaries and radiology notes. The
discharge notes, however, were excluded from analysis due to revealing sensitive
information.

3.1.2. Dataset Preprocessing
3.1.2.1. Tasks
The dataset was utilized to address the following predictive tasks:

● Readmission Prediction: Assessing the likelihood of patient readmission
within a month post-discharge.

● Mortality Prediction: Evaluating whether patients will survive or succumb to
their conditions.

● Length of Stay Prediction: Determining whether patients stay for more than 3
or 7 days.
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3.1.2.2. Setup
For this analysis, we concentrated on utilizing data from less than 24 hours and 48
hours post-admission:

● <24 hours of Patient Data: We focused on this shorter timeframe due to the
limited number of samples, which may enhance the complexity of the task.

● <48 hours of Patient Data: This larger timeframe allows for more data
availability.

Figure 1: Relationships between modalities

Figure 1 illustrates the relationships between modalities linked to each other and their
corresponding labels. The left panel represents the complete dataset, while the middle
and right panels show samples collected within the first 24 and 48 hours post-
admission, respectively.

Figure 2 Relative composition of modalities using various combinations
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Figure 2 presents the relative composition of modalities in various combinations: the
left shows combinations of notes, CXR, and ICU vitals; the middle illustrates ECG,
ICU, and CXR; while the right displays notes, ECG, and ICU.

3.1.2.3 Class Label Imbalance

Figure 3: Class label composition for each modality for different tasks for <24hrs
setup
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Figure 4: Union of modalities.
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Figure 5: Interscetion of modalities.

Figure 4 illustrates the Class label composition for each modality for different tasks
for <24hrs setup while the Figure 4 showcases the union of modalities, representing
sampling strategies considering instances with missing modalities.
In contrast, Figure 5 illustrates the intersection of modalities, sampling only when all
modalities are present.

3.1.2.4. Observations from Dataset Analysis
a. Class Imbalance Across Tasks and Modalities:
A substantial class imbalance was identified across nearly all tasks, modalities, and

patient categories, especially for short-duration stays (less than 24 or 48 hours). This
imbalance complicates model training and evaluation, risking biased performance
metrics and inadequate generalization to unseen data.
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b. Disproportionate Sample Distribution:
Each modality exhibited a skewed sample distribution relative to others,

complicating multimodal learning where equal representation is preferred for effective
information contribution.
c. Data Loss from Missing Modalities:
Excluding instances with missing modalities led to over 90% of available data being

disregarded, significantly diminishing the dataset's size and potentially impairing
model performance on multimodal data.
d. Random Sampling Misalignment:
Randomly sampled modalities resulted in disproportionate combinations, disrupting

modality alignment and representation effects. Thus, effective sampling strategies are
essential to accurately reflect the true relationships among modalities without
introducing noise or bias.

3.1.3. Dataset Splitting/Balancing
1. Standardized Dataset Splitting:
A consistent split of the dataset into training, validation, and test sets was

established, maintaining proportionality across tasks, modality combinations, and
experimental setups for both supervised and self-supervised learning. Although the
target split was 80%-10%-10%, the final distribution was 80.5% for training, 9.7% for
testing, and 9.8% for validation. This approach ensures balanced class distributions
for each task label and modality combination.
2. Balanced Sampling:
A balanced sampling strategy was adopted to ensure proportional representation of

each modality combination, thereby enhancing the dataset's representativeness for
each task and addressing class imbalance effectively.
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Figure 6: Train, Validation and Test split of the dataset.

Figure 7: The class labels composition for each task in the validation set.

Figure 6 illustrates the training, validation, and test splits of the dataset, while Figure 7
provides a detailed composition of class labels for each task in the validation set. The
mortality prediction task (denoted by the discharge label) reflects a skewed
representation due to the rare occurrence of death events, maintaining a ratio
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exceeding 10:1 for the minority class to prevent disruption to the training set.

Figure 8: Percentage of different modality combinations with respect to different
task labels.

Figure 8 displays the proportional representation of various modality combinations
across different task labels, emphasizing that only combinations with a minimum of
50 samples were included to avoid outlier influence, while most combinations
exceeded 100 samples. Notably, the "ECG, notes" combination does not overlap with
"ECG," as these represent distinct intersections of modality combinations.
Consequently, sampling within these intersections yields a balanced dataset when
viewed holistically.

3.1.4. Data Description:
Admittime and dischtime were used to calculate the length of stay for each patient.

The model's input was limited to the first 24 hours of monitored data, and this time
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window was also used to generate the corresponding labels for predicting length of
stay.

1. Electronic Health Records (EHR):
1.1. Demographic Data: The demographic data include the following
categorical features:

anchor_age_num: This represents the de-identified age group of the
patient (e.g., 0-9, 10-19, 91-100).
insurance_num: This encodes insurance types such as Medicaid,

Medicare, and Other.
language_num: Binary feature indicating whether the patient speaks

English or another language.
marital_status_num: Categorical feature representing marital status

(Divorced, Married, Single, Widowed).
race_num: A feature that encodes the patient's race into one of 33

categories.

1.2. Time Series Data:Missing values in the time series were filled using the
last available recorded value. If the missing entry was the first in the series, the
mean value for that feature across the entire dataset was used. The time
difference (delta time) was calculated using `charttime - admittime` to
determine when the monitored value was recorded.

1.3. Chart Events (6 features): Heart Rate, Non-Invasive Blood Pressure
(Systolic, Diastolic, and Mean), Respiratory Rate, O2 Saturation (Pulse
Oximetry), Glasgow Coma Scale (GCS) - Verbal, Eye Opening, and Motor
Response.
1.4. Lab Events (23 features): Glucose, Potassium, Sodium, Chloride,
Creatinine, Urea Nitrogen, Bicarbonate, Anion Gap, Hemoglobin, Hematocrit,
Magnesium, Platelet Count, Phosphate, White Blood Cells, Calcium (Total),
MCH, Red Blood Cells, MCHC, MCV, RDW, Platelet Count, Neutrophils,
Vancomycin.
1.5. Procedure Events (10 features): Foley Catheter, PICC Line, Intubation,
Peritoneal Dialysis, Bronchoscopy, EEG, Dialysis (CRRT), Dialysis Catheter,
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Chest Tube Removed, Hemodialysis.

2. Other Modalities:
2.1. CXR (Chest X-ray): Includes chest X-ray images and their corresponding

chart times, which were converted to delta time.
2.2. Notes: Contains radiology reports (e.g., X-ray, CT, MRI) and the chart times of

these reports, which were converted to delta time.
2.3. ECG: Includes 12-lead ECG data and corresponding chart times, which were

also converted to delta time.

3.1.5. Model Architecture:
1. EHR Modality:
1.1. Modality Encoder:
1.1.1. Demographic Data: The demographic features (5 features) were encoded

into embeddings of shape 38, resulting in a total demographic embedding
𝑑𝑒𝑚𝑜_𝑒𝑚𝑏𝑒𝑑 of size 5 × 38 = 190

1.1.2. Time Series Data: The time series data (39 features) included both chart
events, lab events, and procedure events. The following two models were used to
process these:

1.1.3. GRU-D: A standard GRU-D model that processes both the feature and
time series data.

1.1.4. RNN with Time Series Data: The time stamps were passed through a
Feed-Forward Network (FFN) to convert them from shape (𝑁,) to (𝑁, 39). The FFN
output was then concatenated with the time series data (producing a shape of 78), and
passed through the RNN. FFN layer consists of skip connection with sigmoid
activation and linear layer as shown in Eq 1.

𝐹𝐹𝑁(𝑇𝑆) =  𝑇𝑆 +  𝐿𝑖𝑛𝑒𝑎𝑟(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐿𝑖𝑛𝑒𝑎𝑟(𝑇𝑆))) (1)

1.1.5. RNN (2 Heads): The feature data was processed in an RNN with two
layers, using two parallel heads. The first head processed the feature vector filled with
mean or previous values 𝑋, while the second processed raw features with missing
modalities filled as zero 𝑋 ×  𝑚𝑎𝑠𝑘 as shown in Eq 2.1-2.2. The outputs from both
heads 𝑍,𝑍′ were concatenated and passed through a linear layer, producing an output
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𝑡𝑠_𝑒𝑚𝑏𝑒𝑑 of shape 578 as shown in Eq 2.3-2.4.

𝑍 =  𝑅𝑁𝑁(𝑋) (2.1)
𝑍′ =  𝑅𝑁𝑁(𝑋 ×  𝑚𝑎𝑠𝑘) (2.2)

𝐼𝑓 𝑑𝑒𝑙𝑡𝑎 𝑡𝑖𝑚𝑒 𝑇𝑆 𝑖𝑠 𝑢𝑠𝑒𝑑: 𝑋 =  𝑐𝑜𝑛𝑐𝑎𝑡(𝑋, 𝐹𝐹𝑁(𝑇𝑆)) (2.3)
𝑡𝑠_𝑒𝑚𝑏𝑒𝑑 =  𝐿𝑖𝑛𝑒𝑎𝑟(𝑅𝑒𝐿𝑈(𝑐𝑜𝑛𝑐𝑎𝑡(𝑍, 𝑍′))) (2.4)

1.2. Time Series Encoder: A classic LSTM layer was applied to the (𝑁, 578)

vector, and the output from the final time step was used as the representation,
resulting in an embedding of size 578 as shown in Eq 3.

𝑡𝑠_𝑒𝑚𝑏𝑒𝑑 =  𝐿𝑆𝑇𝑀(𝑡𝑠_𝑒𝑚𝑏𝑒𝑑) (3)
1.3. Classifier: The time series embedding was concatenated with the demographic

embedding, producing a vector of shape 768. This was passed through a linear layer to
𝑜𝑢𝑡𝑝𝑢𝑡 logits for binary classification as shown in Eq 4.1-4.2:

𝑒𝑚𝑏𝑒𝑑 =  𝑐𝑜𝑛𝑐𝑎𝑡(𝑡𝑠_𝑒𝑚𝑏𝑒𝑑, 𝑑𝑒𝑚𝑜_𝑒𝑚𝑏𝑒𝑑) (4.1)
𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐿𝑖𝑛𝑒𝑎𝑟(𝑒𝑚𝑏𝑒𝑑) (4.2)

2. CXR, Notes, and ECG Modalities:
2.1. Modality Encoder:
2.1.1. CXR: A pretrained DenseNet model (torchxrayvision, densenet121-res224-

mimic_ch) was used to generate a 1024-dimensional embedding for each chest X-ray.
2.1.2. Notes: Pretrained Clinical-T5-Base was used to generate embeddings for

each radiology text, producing an embedding of shape 768.
2.1.3. ECG: A pretrained SEER ResNet model generated a 256-dimensional

embedding for each 12-lead ECG recording. For each patient timestamp data 𝑋𝑖, the
corresponding encoder generated a modality-specific embedding.
2.2. Intermediate Layer: For CXR and ECG, the embeddings were projected to

768 dimensions using a linear layer, while the notes embeddings remained at 768 due
to the large size of the encoder.

𝑀 =  𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋𝑖) (5.1)
𝑀𝑖 =  𝐿𝑖𝑛𝑒𝑎𝑟(𝑋𝑖) (5.2)

2.3. Timestamp Fusion: The delta time values were passed through a Feed-
Forward Network (FFN) to convert their shape from 1, 𝑡𝑜 (768,), and the resulting
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embedding was added to the intermediate layer’s output 𝑀𝑖.
𝑀𝑖 =  𝑀𝑖 +  𝐹𝐹𝑁(𝑇𝑆) (5.3)

2.4. Time Series Encoder:
We incorporate a trainable padding token represented as a zero tensor and a
classification token represented as a random tensor with a shape of 768. These are
used to handle missing modalities, with the padding token embedding and
classification token concatenated after the modality embedding or padding token
embedding. We utilize a BERT transformer with 4 blocks and 4 attention heads to
generate embeddings. The final embedding corresponding to the classification token is
then used as shown in Eqn 6.1-6.2.

𝑀 =  𝑀 +  ([𝑃𝐴𝐷], [𝑃𝐴𝐷], ... 𝑛 𝑡𝑖𝑚𝑒𝑠) +  [𝐶𝐿𝑆] (6.1)

Where [𝑃𝐴𝐷] is used to pad up to the maximum batch size or to handle missing data
for this modality.

𝑒𝑚𝑏𝑒𝑑 =  𝐵𝐸𝑅𝑇(𝑀)[− 1] (6.2)

2.5. Classification Layer:
The generated embedding 𝑒𝑚𝑏𝑒𝑑 is passed through a linear layer to produce a logit
output with shape 1. The classification output is:

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐿𝑖𝑛𝑒𝑎𝑟(𝑒𝑚𝑏𝑒𝑑) (6.1)

3. Multi-Modality Fusion:
We utilize the embeddings before the classification stage for each modality and apply
different fusion techniques prior to passing them to the classification layer.

3.1. Sum Fusion:
For sum fusion, the embeddings from each modality are summed:

𝑒𝑚𝑏𝑒𝑑 =  ∑ 𝑒𝑚𝑏𝑒𝑑ᵢ (7.1)
𝑤ℎ𝑒𝑟𝑒 𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦
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Afterward, the following transformation is applied:

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐿𝑖𝑛𝑒𝑎𝑟(𝑅𝑒𝐿𝑈(𝐿𝑖𝑛𝑒𝑎𝑟(𝑒𝑚𝑏𝑒𝑑))) (7.2)

3.2. Transformer Fusion:
For transformer-based fusion, we use a classification token [𝐶𝐿𝑆] of a random
trainable tensor along with a trainable positional embedding, 𝑝𝑜𝑠_𝑒𝑚𝑏𝑒𝑑, of size
(𝑛𝑢𝑚 𝑜𝑓 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑖𝑒𝑠, 768). The embedding is updated as shown in Eq 8.1-8.3 and is
passed to BERT model to generate the final embeddings.

𝑒𝑚𝑏𝑒𝑑 =  𝑒𝑚𝑏𝑒𝑑 +  𝑝𝑜𝑠_𝑒𝑚𝑏𝑒𝑑 (8.1)
𝑒𝑚𝑏𝑒𝑑 =  𝑒𝑚𝑏𝑒𝑑 +  [𝐶𝐿𝑆] (8.2)
𝑒𝑚𝑏𝑒𝑑 = 𝐵𝐸𝑅𝑇(𝑒𝑚𝑏𝑒𝑑)[− 1] (8.3)

Classifier:
For the final classification step, the output is computed by passing the embedding
through a linear layer as shown in Eq 8.4

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐿𝑖𝑛𝑒𝑎𝑟(𝑒𝑚𝑏𝑒𝑑) (8.4)

3.1.6. Experimentation Setup:
1. Revamping the HADM Pipeline:
The HADM pipeline underwent significant modifications to accommodate missing

modalities in the MIMIC IV dataset, particularly to support the inclusion of the ECG
modality. The modifications were so extensive that a complete overhaul of the
pipeline was necessary to ensure compatibility with the new data structure and to
manage missing modalities efficiently.
2. Interlinked Data Loaders for Modalities:
Data loaders for each modality were designed to be queried in an interconnected

manner, allowing for seamless multi-modal fusion. This setup ensures that any
required modality can be accessed in conjunction with others, facilitating efficient
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fusion during training and testing.
3. Training Configuration with PyTorch Lightning and DDP:
PyTorch Lightning was employed in combination with Distributed Data Parallel

(DDP) to handle both single-modality and multi-modality training. The training setup
is controlled through a single `.yaml` configuration file, ensuring uniformity and
reproducibility across different experiments.
4. Monitoring with Weights & Biases (W&B):
The W&B platform was used to monitor several important aspects of the

experiment:
● Binary Classification Metrics: Seven binary classification metrics were

tracked across training, validation, and test sets to evaluate model
performance.

● Single-Modality and Multi-Modality Performance: Metrics were used to
separately evaluate single-modality samples (e.g., CXR-only or notes-only)
and multi-modality samples (i.e., samples linked with other modalities).

● Metrics by Modality Combination: Metrics were also tracked for each
combination of modalities, allowing a detailed view of performance across
different modality configurations.

5. Embedding Visualization:
Embeddings from the training, validation, and test sets were sampled and visualized

to examine how different training strategies, modalities, and modality combinations
influence the learned representations.

6. Gradient Monitoring:
Gradients were tracked during training to monitor model optimization and to

provide insights into learning dynamics.

7. Pipeline Structure for Modalities:
The pipeline for each modality is structured in the following way:
1. Modality Encoder: This component encodes individual samples for each

modality.
2. Time Series Encoder: This encoder combines the embeddings of each

sample into a unified representation for time-series data.
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3. Classifier: A final binary classification head that generates the output for the
model.

8. Class Imbalance Handling:
To handle class imbalance, the following strategies were used:
If the class distribution was less skewed than a 10:1 ratio, the minority class was

oversampled to match the majority class. For more skewed distributions, the
minority class was oversampled by 50% of the majority class, and the majority class
was undersampled by 50%. Different random seeds were used in each epoch to
maintain variability, while a pre-determined seed sequence ensured reproducibility
and reduced overfitting on the oversampled minority classes.

3.2. Optical Flow Estimation
3.2.1. Optimization Technique
In this research, we focused on optimizing the existing RAFT (Recurrent All-Pairs
Field Transforms) model for optical flow estimation using a multi-GPU and multi-
node setup. The model was deployed in a distributed computing environment using
Distributed Data Parallel (DDP) processing, facilitated by Lightning-Fabric. The
primary aim of this setup was to efficiently scale the model's training to accommodate
larger batch sizes without running into out-of-memory (OOM) errors, a common
challenge in deep learning tasks with high computational demands like optical flow
estimation. The RAFT model's architecture was not modified; instead, we
concentrated on improving the scalability and memory handling to enhance
computational efficiency.
To achieve these optimizations, a cluster of multiple GPUs and nodes was configured
to maximize parallel processing capabilities. The use of DDP allowed us to distribute
the workload across multiple GPUs and nodes, synchronizing their operations to
ensure smooth and efficient model training. This setup provided the necessary
computational resources to handle large-scale data while maintaining memory
efficiency across devices.
Several key optimization techniques were employed to maximize the efficiency and
scalability of the RAFT model in this distributed environment. First, Fairscale’s CPU
offloading was integrated to shift some memory loads from the GPU to the CPU,
thereby freeing up GPU resources for more critical computations. This technique
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helped mitigate memory bottlenecks, allowing for the handling of larger batch sizes.
Next, we applied mixed-precision training, which combines 16-bit and 32-bit
floating point operations. This significantly reduced memory consumption without
compromising the accuracy of the optical flow estimations. Finally, we implemented
activation checkpointing to further minimize memory usage. By only storing key
intermediate results and recomputing others when necessary, we reduced the overall
memory footprint during training, allowing for a higher batch size without OOM
errors.
These optimizations, applied in tandem with a distributed multi-GPU, multi-node
setup, enabled us to expand the computational capabilities of the RAFT model,
ensuring more efficient training while preserving memory integrity.

3.2.2 Test-Time Adaptation Algorithm
We begin with an input image 𝑥, from which an initial optical flow map is generated:

𝑜𝑝𝑡 = 𝑚𝑜𝑑𝑒𝑙(𝑥) (9.1)
Following this, the optical flow map is iteratively refined through a series of iii
augmentation steps. Each step involves generating an augmented input 𝑥′ as follows:

𝑥′ = 𝑎𝑢𝑔(𝑜𝑝𝑡,𝑥) (9.2)
The model then processes the augmented input 𝑥′ to produce an updated optical flow
map:

𝑜𝑝𝑡′ = 𝑚𝑜𝑑𝑒𝑙(𝑥′) (9.3)
The loss function is calculated as the variance between the original optical flow map
𝑜𝑝𝑡 and the augmented optical flow map 𝑜𝑝𝑡′:

𝐿𝑜𝑠𝑠 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑜𝑝𝑡′,𝑜𝑝𝑡) (9.4)
The primary goal of this algorithm is to reduce the variance between the optical flow
map generated for the original input and the augmented images. The augmentation
process generates random patches with pixel values constrained by the minimum and
maximum values of the input image. These patches are then placed in random
positions in both the original image x and its augmented counterpart 𝑥′. The optical
flow map produced by the model during test-time adaptation guides the patch
placement, and minimizing the variance between the original and augmented optical
flow maps helps the model improve its predictions on unseen data.
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CHAPTER 4
4.1. Metrics:
In this study, the performance of the model for the mortality prediction task within
the MIMIC dataset is evaluated using three key metrics: F1 score, Area Under the
Receiver Operating Characteristic Curve (AUROC), and End-Point Error (EPE).
These metrics help provide a comprehensive understanding of the model's predictive
accuracy, robustness, and effectiveness in handling both the binary classification task
of mortality prediction and the continuous nature of optical flow estimation.

F1 Score
The F1 score is a metric that combines precision and recall into a single value,
particularly useful for binary classification tasks like mortality prediction, where
imbalanced data is often an issue. In the MIMIC dataset, where there are significantly
fewer mortality cases compared to survivals, the F1 score helps assess how well the
model balances false positives and false negatives. The formula for the F1 score is:

𝐹1 =  2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 (10.1)

This metric gives equal importance to precision and recall, ensuring that both false
positives and false negatives are minimized in predicting patient mortality.

AUROC Score
The AUROC (Area Under the Receiver Operating Characteristic Curve) is another
critical metric used for the mortality prediction task. It assesses the model’s ability to
distinguish between the two classes (mortality vs. survival) across different
classification thresholds. The AUROC score reflects the probability that a randomly
chosen positive instance (mortality) is ranked higher by the model than a randomly
chosen negative instance (survival). A higher AUROC score indicates better
discriminative performance, with a value of 1 representing perfect classification.

The AUROC score is calculated by plotting the true positive rate (recall) against the
false positive rate (1-specificity) and measuring the area under this curve. The formula



25

for AUROC is:

𝐴𝑈𝑅𝑂𝐶 =  ∫1
0 𝑇𝑃𝑅(𝑡)𝑑𝐹𝑃𝑅(𝑡) (10.2)

This score provides insight into the model’s overall performance across all
classification thresholds, especially in imbalanced datasets where a high AUROC
indicates strong classification power.

End-Point Error (EPE)
For the optical flow component of this study, we use the End-Point Error (EPE) to
evaluate the precision of the model’s flow predictions. EPE measures the Euclidean
distance between the predicted flow vectors and the ground truth at each pixel,
making it a standard metric in optical flow estimation. A lower EPE score indicates
better alignment with the true motion.

The formula for EPE is:

𝐸𝑃𝐸 =  1
𝑁∑𝑁

𝑖=1 (𝑢ᵢ − 𝑢ᵢ)2 − (𝑣ᵢ − 𝑣ᵢ)2 (10.3)

Where:
● (𝑢ᵢ,𝑣ᵢ) represent the ground truth flow components in the x and y directions,

respectively.
● (𝑢ᵢ, 𝑣ᵢ) are the predicted flow components.
● 𝑁 is the number of pixels in the image.

EPE provides a direct quantitative measure of the accuracy of the optical flow model,
with lower values indicating a closer match between the predicted and true optical
flow.
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4.2. Multi-Modal Learning Framework

1. EHR:
a. GRU-D vs RNN:

Table 1: GRU-D vs RNN F1-score comparison.

MODEL TEST F1 SCORE

GRU-D 0.6625
RNN 0.71844

RNN demonstrates superior performance compared to GRU-D, both in terms of F1
score and training time. RNN achieved a higher F1 score (0.71844 vs. 0.6625) and
was more efficient, taking almost 40% less time to train. This indicates that the RNN
model is both faster and more effective for EHR data.

b. RNN vs RNN-TS:
Table 2: RNN vs RNN-TS F1-score comparison.

MODEL TEST F1 SCORE
RNN 0.71844

RNN-TS 0.71549

RNN-TS (with time series data) performed almost similarly to the standard RNN (F1
score of 0.71549 vs. 0.71844). This suggests that incorporating time series data as
positional embeddings does not significantly enhance the model's performance and
may even slightly degrade it.

c. RNN Class Balance vs. Without Class Balance:

Table 3: RNN vs RNN-TS F1-score comparison.
MODEL TEST F1 SCORE

RNN (NO CLASS BALANCE) 0.71288
RNN (WITH CLASS BALANCE) 0.71844

Class balancing provided a marginal improvement in performance, boosting the F1
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score from 0.71288 to 0.71844. This suggests that while class balancing helps, its
impact is not substantial for the EHR dataset.

d. Training Time:

Table 4: GRU-D vs RNN-TS training time comparison in seconds.
MODEL TRAININGTIME (SECONDS)
GRU-D 135,230
RNN-TS 82,968

RNN-TS is significantly faster to train compared to GRU-D, indicating that the
simpler RNN architecture is more efficient in this context, potentially due to the
reduced complexity in handling time-series data compared to GRU-D.

2. CXR:

Table 5: Comparison of F1 scores for different configurations of class balance
and positional embedding.

CONFIGURATION TEST F1 SCORE
NO CLASS BALANCE AND POSITIONAL EMBEDDING 0.56609
WITH CLASS BALANCE AND POSITIONAL EMBEDDING 0.66634

WITH CLASS BALANCE BUT NO POSITIONAL EMBEDDING 0.62633

Class balancing improved the model’s performance significantly, increasing the F1
score from 0.56609 to 0.66634. Additionally, adding positional embeddings further
enhanced the performance (F1 score: 0.66634 vs. 0.62633), suggesting that positional
embeddings in CXR data play a role in improving the model's capacity to capture
temporal information.
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3. Notes:
Table 6: Comparison of F1 scores for frozen and unfrozen configurations

with/without class balance and positional embedding.
CONFIGURATION TEST F1 SCORE

NO CLASS BALANCE (FROZEN) 0.12199
FROZEN (WITH CLASS BALANCE) 0.5004

FROZEN (NO POSITIONAL EMBEDDING) 0.24544
UNFROZEN (NO CLASS BALANCE) 0.66085
UNFROZEN (WITH CLASS BALANCE) 0.63192

Unfreezing the notes encoder and allowing the model to fine-tune the notes
embeddings significantly improved performance, with the F1 score rising to 0.66085
(without class balance). Class balancing marginally reduced performance in the
unfrozen model (0.63192). Frozen models performed poorly, highlighting the
importance of fine-tuning. Additionally, positional embeddings play a significant role,
as removing them drastically dropped the F1 score from 0.5004 to 0.24544.

4. ECG:
Table 7: Test F1 and AUROC scores comparison for models with and without

class balance.

CONFIGURATION TEST F1 SCORE AUROC
WITHOUT CLASS BALANCE 0.0 0.5197
WITH CLASS BALANCE 0.6236 0.52089

Without class balancing, the ECG model failed to predict more than one class,
resulting in an F1 score of 0. However, class balancing greatly improved the
performance, yielding an F1 score of 0.6236. This demonstrates that class imbalance
severely impacts the ECG modality, and balancing is crucial for achieving meaningful
predictions. Additionally, this highlights that AUROC is not a reliable metric in
skewed predictions, as the AUROC for the unbalanced ECG model was still
comparable despite the F1 score being 0.
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5. Total comparison:
Table 8: Test F1 and AUROC scores for different modalities.

MODALITY TEST F1 SCORE AUROC SCORE
NOTES 0.66085 0.62601
ECG 0.6236 0.52089

RNN-TS (EHR) 0.71549 0.77536
CXR 0.66634 0.52081

Among the single modalities, the EHR data using RNN-TS performed the best, with
an F1 score of 0.71549 and AUROC of 0.77536. CXR also performed well, with an
F1 score of 0.66634. Notes and ECG followed with slightly lower scores. The
AUROC scores indicate that while F1 remains the primary measure of interest,
AUROC is not as reliable in imbalanced datasets like ECG and CXR.
6. Multimodality:
Table 9: Performance comparison of F1 scores for different fusion methods.

FUSIONMETHOD F1 SCORE
SUM FUSION OFCXR + EHR 0.69789

TRANSFORMER FUSION OFCXR + EHR 0.70182
SUM FUSION OFCXR + EHR +NOTES 0.45058

TRANSFORMER FUSION OFCXR + EHR +NOTES 0.66817
SUM FUSION OFCXR + ECG + EHR +NOTES 0.51967

TRANSFORMER FUSION OFCXR + ECG + EHR +NOTES 0.61993
SUM FUSION OFCXR + EHR +NOTES 0.45058

TRANSFORMER FUSION OFCXR + EHR +NOTES 0.66817

The transformer-based fusion consistently outperforms the sum fusion method across
all modality combinations. For instance, Transformer CXR + EHR (F1 score:
0.70182) slightly outperforms Sum CXR + EHR (F1 score: 0.69789). Similarly,
Transformer CXR + ECG + EHR + Notes (F1 score: 0.61993) shows significant
improvement over the sum fusion of the same modalities (F1 score: 0.51967). This
indicates that transformer-based fusion is more effective in learning from the complex
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interactions between modalities.

Table 10: Comparison of F1 scores for multi-modality Transformer fusion
results and single modality baselines.
FUSION/MODALITY F1 SCORE

MULTIMODALITY (TRANSFORMER FUSION)
TRANSFORMER CXR + ECG + EHR +NOTES 0.61993

TRANSFORMER CXR +NOTES + ECG 0.55538
TRANSFORMER CXR + EHR + ECG 0.45439
TRANSFORMER CXR + EHR +NOTES 0.66817

TRANSFORMER CXR +NOTES 0.64509
TRANSFORMERNOTES + ECG 0.58547

SINGLEMODALITY BASELINE
EHR 0.71549
CXR 0.66634
NOTES 0.66085
ECG 0.62360

Although multimodal fusion using transformers improves performance in some cases,
adding more modalities does not always result in better outcomes. For example,
Transformer CXR + ECG + EHR + Notes (F1 score: 0.61993) performed worse
than EHR alone (F1 score: 0.71549). This suggests that poorly aligned modality
combinations can degrade performance. The best-performing multimodal models
should ideally surpass the highest-performing single-modality model. However, this is
not consistently observed, indicating that proper modality alignment and fusion are
critical for achieving optimal performance.

Transformer-based fusion provides better results compared to sum fusion in
multimodal learning, especially when integrating complex and diverse modalities such
as CXR, ECG, EHR, and Notes. However, simply combining modalities does not
guarantee improved performance; well-aligned models must be carefully designed to
achieve results that exceed the best-performing individual modalities. Ideally, the
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performance of a multimodal model should be greater than the maximum F1 score of
the individual modalities (e.g., EHR or CXR alone).
4.3. DDP Optical Flow Estimation

Figure 9: Percentage of absolute EPE score changes

Figure 10: EPE scores for different configurations
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Table 11: EPE scores for different configurations
BATCH SIZE NUMBER OFAUGMENTATIONS EPEVALUE

8 2 2.75277
2 11 2.75071
6 3 2.78732
2 3 2.74143
6 2 2.80244
2 2 2.76932

Figure 9 illustrates percentage of absolute EPE score decrease for different
combinations of number of augmentation, number of epoch and batch size while the
Figure 10 illustrates different combinations of number of augmentation, number of
epoch and batch size. and its corresponding EPE scores. Table 11 illustrates the EPE
scores for different batch size and number of augmentations using a system equipped
with six GPUs. Across these different configurations, a reduction in EPE is observed,
although the results do not exhibit a consistent trend. This suggests that while the
applied augmentations and optimizations do contribute to minimizing EPE, further
tuning of the batch size, number of GPUs, and augmentation strategies is required to
achieve more definitive improvements.
For example, the configuration with a batch size of 2 and 11 augmentations resulted in
the lowest EPE value of 2.75071. This configuration also illustrates the overall batch
size calculation in distributed training, where the net batch size is determined by the
following formula:

𝑁𝑒𝑡 𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒 = 𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒 × (𝑁𝑢𝑚 𝑜𝑓 𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 + 1) × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑃𝑈𝑠

For example, the configuration of batch size 2 and 11 augmentations, with six GPUs,
the net batch size would be:

2 × (11 + 1) × 6 = 1442
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CHAPTER 5
5.1. Multi-Modal Learning Framework:

5.1.1. Conclusion
In conclusion, the analysis of multimodal datasets in this study

underscores several key insights. The transformer-based fusion method proves
superior to sum fusion in most cases, offering better performance in learning
complex interactions between modalities like CXR, ECG, EHR, and Notes.
However, combining modalities does not inherently improve performance. In
some instances, poorly aligned combinations result in degraded outcomes
compared to individual modalities, such as the EHR, which consistently
performs well on its own.

The findings highlight the challenges posed by class imbalance,
especially in modalities like ECG, where oversampling is essential to prevent
skewed predictions. Additionally, the use of positional embeddings
significantly enhances performance in CXR and Notes modalities, further
emphasizing the importance of integrating temporal information in multimodal
datasets.

Although multimodal learning holds promise, careful consideration
must be given to modality alignment, dataset balance, and fusion techniques.
Future research should aim to refine these aspects to ensure that multimodal
models consistently surpass the performance of the best single-modality
models.

5.1.2. Future Scope

1. Bias Reduction (Downstream task only): Using placeholder embeddings of a
missing modality as an anchor to alleviate model bias.

a. Ideally, an unbiased model, when given no information, shouldn't be
able to decide a class (i.e., 50-50 probability).

b. Thus, we can try to use this as a data sample once in a while during
training and study its effect on model performance.

2. Using one of the modality's encoders as a way to perform positive pair
mining for inter-modal self-supervision and intra-modal self-supervision of
other modalities. After a certain level of intra-modal training, we will be
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introducing the inter-modal self-supervised learning phase. Usually, every
sample aside from itself is considered a negative pair in both inter and intra-
modal learning. This will, at some point, limit the model learning since other
samples being -ve pairs are partially or sometimes completely wrong.

a. Instead, we use a good-performing modality's encoder as a judge to
perform the +ve pair mining by applying cosine similarity to that
particular modality's representation. Since the threshold is unknown
following can be done:

b. After an epoch/regular period of time encode the entire dataset of the
judging modality. Take the cosine similarity amongst every other pair
and average them to get the average threshold.

c. On the assumption that modality isn't reliable, a decay parameter can
be set to slowly increase the max allowed positive pair generated by the
modal, and top k can be chosen.

d. Even after this, to reduce the detrimental effects of wrong positive
pairs, we use the cosine similarity value found amongst the judging
modality embeddings as a confidence score to weigh those terms in
inter and intra-model loss.

3. Using GradCAM mask as a way to weigh the important intra-modal feature to
boost inter-model representation learning:

a. The whole idea of using inter-model alignment and intra-model
alignment is based on the assumption that learned representations of
their respective modalities are complemented by learned
representations between modalities and vice-versa.

b. But during cross-model alignment, if the other modality focuses on the
unnecessary feature of the other modality, it might delay
improvement/worsen the performance.

c. Instead, we could apply GradCAM through the intra-modal loss to get
the mask/weight representing the key impactful features during inter-
modal loss.

Embeddings can also be viewed as PCA in 2D (meant for future scope to visualize
alignment), the figures present PCA 2D visualizations of embedding outputs from a
transformer-based model that integrates multiple medical modalities, including Chest X-rays
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(CXR), ECG, EHR (Electronic Health Records), and clinical notes. Figure 11 shows the
overall embedding output when fusing all four modalities together. Figures 12 to 15
individually depict the embeddings for each modality—Notes, Chest X-rays, EHR, and ECG,
respectively—demonstrating the contribution of each data type to the model's fusion process.
Lastly, Figure 16 provides PCA visualizations of projections from different training runs,
highlighting their utility for phase-wise training analysis.

Figure 11: PCA 2D visualization of overall embedding.
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Figure 12: PCA 2D visualization of Notes embedding.

Figure 13: PCA 2D visualization of Chest X-Ray embedding.
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Figure 14: PCA 2D visualization of EHR embedding.

Figure 15: PCA 2D visualization of ECG embedding.
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Figure 16: PCA 2D visualization of different runs.

5.2. DDP Optical Flow Estimation

5.2.2. Conclusion:
In conclusion, this research demonstrates the successful application of Distributed
Data Parallel (DDP) processing using Lightning-Fabric for optimizing an optical flow
model across multi-GPU and multi-node configurations. Key techniques such as CPU
offloading, mixed-precision training, and activation checkpointing were employed to
enhance memory efficiency and maximize batch size. The test-time adaptation
algorithm introduced here, which iteratively refines optical flow maps through
augmentations, contributes to reducing End-Point Error (EPE) between the predicted
optical flow and the ground truth.
While empirical results show a general reduction in EPE with varying batch sizes and
augmentations, the findings indicate that there is no clear, consistent trend across all
configurations. This suggests the need for further experimentation, particularly with
larger batch sizes, additional GPUs, and alternative augmentation strategies, to fully
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optimize model performance.

5.2.2. Future Work:
While the current experiments demonstrate a reduction in EPE across different
combinations of batch sizes and augmentations, there is no clear trend that applies
universally to all configurations. This variability suggests that further experimentation
with larger batch sizes and additional GPUs may be necessary to validate the observed
outcomes and refine the adaptation algorithm.
Moving forward, we plan to explore new augmentation strategies that can potentially
yield more consistent and significant improvements. By incorporating more diverse
forms of image augmentation and optimizing model training further, we aim to
enhance the robustness of the optical flow estimation process.
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