
LAB REPORT-3

Subtopic: Semantic Analysis

A) Generate syntax directed translations for your grammar.

B) Create a syntax tree for your input program.

C) Show that your compiler is able to detect semantic errors which was not detected up to
Syntax Analysis phase.

A) Generate syntax directed translations for your grammar.

The 'constant' non-terminal branches into 'T_Number' and 'T_String' alternatives. Both

branches invoke 'insertRecord' and 'createID_Const' functions, handling semantic actions like

inserting constant values into a symbol table and creating identifier nodes. '@1.first_line'

denotes the line number, and 'currentScope' refers to the symbol table scope. This tree

captures parsing and processing of constant declarations.

Each rule includes actions embedded within curly braces, denoted by $$, which manipulate

attributes associated with nodes. For instance, in the first rule, the term's attribute is

assigned to the synthesized attribute of the non-terminal node. Similarly, in subsequent

rules, actions create operation nodes with appropriate operators and operands, along with

computing and assigning values to these nodes based on the corresponding arithmetic

operations.

Each production rule defines actions associated with constructing an annotated parse tree.

In this specific case, the rule handles assignment statements. The actions include inserting

records into a symbol table, creating nodes in the parse tree to represent assignments, and

updating associated values in the symbol table. These actions facilitate the process of

parsing source code and generating a representation for subsequent semantic analysis.

The node representing the "updateval" function would have annotations indicating its return

type, parameters, and their types. The "char term$<text>1" parameter suggests a character

array named "term" with some additional constraints (perhaps related to its length or

format). The "int val$$->id->val" parameter indicates an integer value that is assigned to a

member called "val" within a nested structure. The function implementation within the node

would reference a record identified by "name" and "scope" parameters, updating its "val"

field with the provided value.

Sample Input

x=20

y=5

z=4

print(x*y+z)

Annotated Parse Tree (SDT) Output:

StartParse
 |
 |--- assign_stmt
 | |
 | |--- T_ID (id='x')
 | |--- T_EQL
 | |--- T_NUMBER (Num=20, Value=20)
 |
 |--- assign_stmt
 | |
 | |--- T_ID (id='y')
 | |--- T_EQL

 | |--- T_NUMBER (Num=5, Value=5)
 |
 |--- assign_stmt
 | |
 | |--- T_ID (id='z')
 | |--- T_EQL
 | |--- T_NUMBER (Num=4, Value=4)
 |
 |--- print_stmt
 | |
 | |--- T_Print (Value=104)
 | |--- T_OP
 | |--- arith_exp (Value=104)
 | |
 | |--- arith_exp (Value=100)
 | |--- arith_exp (Value=20)
 | |--- term (Value=20)
 | |--- T_ID (id='x', Value=20)
 | |--- T_ML
 | |--- arith_exp (Value=5)
 | |--- term (Value=5)
 | |--- T_ID (id='y', Value=5)
 | |--- T_PL
 | |
 | |--- arith_exp (Value=4)
 | |--- term (Value=4)
 | |--- T_ID (id='z', Value=4)
 | |--- T_CP

B) Create a syntax tree for your input program.

For the Syntax Tree, we have 2 Types of Nodes, Leaf nodes and Internal nodes. The nodes

can have variable number of children (0-3) depending upon the construct it represents.

Take the example of the If-Else Statement,

If

Condition CodeBlock Else

To display the Syntax Tree, we store it as a matrix of levels. We have printed each level of

the Syntax Tree. All Internal nodes also have a number enclosed in brackets next to them,

which represents the number of children they have in the next level. Leaf nodes in the

Syntax Tree representing identifiers, constants, Lists, packages point to a record in the

symbol table.

This ASTNode structure takes care of both leaf nodes as well as Internal “Operator” Nodes.

The respective values are set depending upon the type of node. Each node can have 0-3

children. We print the AST by first storing it in a Matrix of Order “MAXLEVELS” x

“MAXCHILDREN” and printing the matrix Levelwise. This Matrix is a matrix of pointers to the

AST. The “noOps” element of the Node gives the number of children of that node.

This function is responsible for creating nodes in a syntax tree to represent identifiers and
constants encountered during parsing. It allocates memory for the node, initializes its
fields, retrieves information about the identifier or constant from some symbol table or
records structure, updates global variables to maintain the syntax tree structure, and
returns a pointer to the newly created node.

The function described facilitates the creation of nodes in a syntax tree during parsing,
taking three parameters: the operator or operation type, the number of operands or child
nodes, and variable pointers to child nodes. Memory is allocated for the new node and its
associated data. Arguments are handled to populate the child nodes of the new node.
Node numbering and insertion into the tree are managed, with special consideration for
the root node. Finally, the function returns a pointer to the newly created node.

This function traverses the AST in a depth-first manner and populates a two-dimensional
array Tree with pointers to the nodes of the AST, organizing them based on their levels or
depths in the tree.

The process begins with printing a header to signify the subsequent output as the abstract
syntax tree (AST). The AST is then converted into an array for easier traversal and
organization. Next, the maximum depth of the AST is determined by counting nodes at
each level, crucial for understanding its structure. Iterating through each level, the tree
structure is printed, adjusting indentation to reflect hierarchy visually. Each node's
information, including type and operand count, is then printed, with formatting adjusted
based on node type for clarity.

These yacc rules define the production rules for generating abstract syntax trees (AST) for
arithmetic and boolean expressions. The 'arith_exp' rule encompasses arithmetic
operations like addition, subtraction, multiplication, division, negation, and parentheses,
utilizing the createOp function to generate corresponding AST nodes. Similarly, the
'bool_exp' rule handles boolean operations such as logical OR, logical AND, inequality,
equality, comparison operators, and membership tests, also employing the createOp
function to construct the respective AST nodes. Ultimately, the resulting AST node for
each expression type is assigned to $$.

The provided yacc rules outline the translation process of various statements and
expressions into abstract syntax tree (AST) nodes using the createOp function. Each rule
corresponds to a specific statement type, such as import, pass, break, return, and
assignment statements. For instance, the import_stmt rule handles import statements by
adding a record to the symbol table for the imported package and creating an AST node with
the operation "import" and the package name as its operand. The return_stmt rule creates
an AST node with the operation "return" and zero or one operand depending on the presence
of an expression. Lastly, the assign_stmt rule deals with assignment statements, adding a
record for the identifier being assigned and constructing an AST node with the operation "="
and two operands: the identifier and the expression being assigned.

The AST structure for conditional statements in programming languages encompasses if,

elif, and else blocks, as well as while loops. An if statement node consists of a boolean

expression and a suite of statements to execute if true, potentially followed by elif

statements. Each elif block includes a boolean expression and its corresponding suite of

statements. The else block represents the suite of statements to execute if none of the

preceding conditions are met. Additionally, a while loop node contains a boolean

expression for its condition and a suite of statements to execute repeatedly while the

condition holds true.

In the call_args production, AST nodes are generated for identifiers, numbers, or strings

followed by additional arguments, forming a hierarchical structure. These nodes represent

the arguments passed to functions, facilitating the construction of a complete AST. Similarly,

the func_def rule constructs AST nodes for function definitions, capturing essential

information such as the function name, arguments, and the suite of statements within the

function body. Furthermore, the func_call production rule generates AST nodes representing

function calls, incorporating the function name and its arguments, thus enabling the

representation of function invocations within the AST.

Syntax Tree Output:
import math

x=10

y=20

#Comment1

listX = []

def F1(A, B, C):

 while(listX[2]==y):

 z=10

 b=10-z

 if(z==b):

 c=10+b

 else:

 c=20+z

 y=21

C) Show that your compiler can detect semantic errors

The provided function yyerror serves as an error handling mechanism within a compiler or

parser. When called, it prints a semantic error message along with the line number and last

column where the error occurred, utilizing the printf function.

Sample Error Program

import random
x=10
def=5
while(xx<5):
 print(x+12)

------------------------------Semantic Output--------------------------

T_IMPT T_random

T_NL

2 T_x T_Assign T_10

T_NL

T_Def T_Assign

Semantic Error at Line 3, Column : 4

T_NL

T_While T_OP T_xx T_LT Identifier 'xx' at line 4 Not Declared

T_NL

5 T_Print T_OP T_x T_Plus T_12 T_CP

T_NL

Our parser detects two main categories of semantic errors during compilation:

• undeclared variables (line 4) and

• reserved identifier misuse (line 3).

Undeclared variables occur when a variable is referenced without being previously
declared within the scope. This error highlights potential issues in program logic and
variable scoping. Reserved identifier misuse refers to the improper usage of reserved
keywords or identifiers within the programming language, violating language syntax rules.
By identifying and flagging these errors, our parser enhances code reliability by producing
syntactically and semantically correct programs.

