
LAB REPORT-2

Subtopic: Parser

A. Create a parser for your programming language

B. Show that this parser correctly parses the input token generated by your lexical analyser
for any program written in your programming language as well as identifies errors.

C. Write a simple program in your language with all kinds of tokens and keywords and show
that your compiler is correctly detecting the tokens and errors. Parse the program using
your parser. Print step by step parsing process and draw the parse tree.

A.Create a parser for your programming language.

This section defines the tokens recognized by the lexer (%token) and the types of the

parser's semantic values (%type). %union defines the possible types of semantic values.

%right, %left, and %nonassoc define the associativity and precedence of operators.

Yacc Production Rules and Grammar

StartDebugger

• This rule initializes the parser by calling the init() function.

• It then starts parsing the input with the StartParse rule.

• When the end of the file is reached (T_EndOfFile), it prints a message indicating

valid Python syntax, prints the symbol table, frees memory, and exits.

StartParse

• This rule defines the starting point of parsing.

• It handles newlines (T_NL) and calls resetDepth() if needed to reset the parser

depth.

constant

• This rule defines how constants are parsed.

• It recognizes tokens representing numbers (T_Number) and strings (T_String).

• For each constant, it inserts a record into the symbol table with the appropriate

type ("Constant"), the value of the constant, and the line number.

term

• Terms represent individual elements in expressions.

• It can be an identifier (T_ID), a constant, or a list index.

• Depending on the type of the term, it modifies the record ID for identifiers, inserts

constant records, or performs list index checks.

basic_stmt

arith_exp

• This rule defines arithmetic expressions, including addition, subtraction,

multiplication, and division.

This rule defines various basic statements
in Python, such as pass_stmt, break_stmt,
import_stmt, assign_stmt, arith_exp,
bool_exp, print_stmt, and return_stmt.

• It recursively defines how arithmetic expressions can be composed of other

arithmetic expressions and terms.

• Parentheses can also be used to group expressions.

Each rule specifies how higher-level constructs are formed from lower-level constructs,

following the syntax rules of the Python language. The associated actions with each rule

may involve modifying the symbol table, performing semantic checks, or executing other

operations necessary for parsing and interpreting Python code.

bool_exp:

• This rule defines boolean expressions, which can be constructed using boolean

terms (bool_term) and logical operators (T_Or, T_And).

• It also allows comparisons (T_LT, T_GT, T_ELT, T_EGT) between arithmetic

expressions (arith_exp).

• Additionally, it supports membership checks (T_In) for elements in a collection

(T_ID).

• The rule also allows for simple boolean terms without any logical or comparison

operations.

bool_term:

• Defines boolean terms, which can be boolean factors (bool_factor) or comparisons

between arithmetic expressions (arith_exp) using equality (T_EQ).

• It also recognizes the boolean constants True and False, inserting corresponding

records into the symbol table.

bool_factor:

Represents boolean factors, which can be negated using the T_Not operator or enclosed

within parentheses using T_OP and T_CP.

import_stmt:

• Handles import statements in Python.

• Recognizes the T_Import token followed by an identifier (T_ID), representing the

package name being imported.

• Inserts a record into the symbol table with the package name.

pass_stmt:

• Represents the pass statement, indicating no operation to be performed.

• Inserts a record with the value "Pass" into the symbol table.

break_stmt:

• Represents the break statement, used to exit a loop prematurely.

• Inserts a record with the value "Break" into the symbol table.

return_stmt:

• Handles return statements in functions.

• It can return an identifier (T_ID), a constant, an arithmetic expression, a boolean

expression, a function call, an empty list, or a list with constants or expressions.

• Inserts a record with the value "return" into the symbol table.

assign_stmt:

• Handles assignment statements where a value is assigned to a variable.

• It can assign arithmetic expressions (arith_exp), boolean expressions (bool_exp),

function calls, or lists to identifiers (T_ID).

• Inserts records into the symbol table accordingly.

print_stmt:

• Represents print statements in Python, used to output text or variables to the

console.

• Recognizes the print keyword followed by a list of terms enclosed in parentheses.

• No symbol table insertion is performed here; it's mainly for handling the printing

action.

These yacc rules define the syntax and semantics for various constructs in the Python

language, including expressions, statements, and control flow mechanisms. Each rule

specifies how different elements are composed and processed during the parsing stage.

Additionally, actions associated with rules perform tasks such as symbol table manipulation

and semantic checks.

if:

• Handles the parsing of if statements in Python.

• It starts with the T_If token followed by a boolean expression (bool_exp), a colon

(T_Cln), and a suite of statements (start_suite).

• It can also have elif branches (elif_stmts) and an optional else branch (else_stmt).

elif and else:

• elif_stmts represent the elif branches of an if statement.

• It starts with the T_Elif token followed by a boolean expression, a colon, and a

suite of statements.

• else_stmt represents the else branch of an if statement.

• It starts with the T_Else token followed by a colon and a suite of statements.

while:

• Handles the parsing of while loops in Python.

• It starts with the T_While token followed by a boolean expression, a colon, and a

suite of statements (start_suite).

start_suite and suite:

• start_suite is the beginning of a suite of statements.

• It can consist of basic statements, a newline followed by an identifier (T_NL ID),

and then a set of final statements (finalStatements) followed by a suite.

• suite represents a suite of statements.

• It starts with a newline (T_NL) followed by the indentation depth (ND), a set of

final statements, and another suite or an end_suite.

end_suite:

• Represents the end of a suite of statements.

• It can consist of a decrease in indentation depth (DD), followed by a set of final

statements or nothing, and optionally, a reset of the indentation depth

(resetDepth()).

List:

• This rule defines the structure of lists.

• It can be either an empty list (T_OB T_CB) or a list with elements enclosed in

square brackets.

• The elements rule defines how elements are structured within the list.

list_index

• This rule handles list indexing, where an element in a list is accessed by its index.

• It checks the validity of the list index and updates the symbol table accordingly.

finalStatements:

• This rule represents the final set of statements or constructs that can conclude a

block of code.

• It can consist of basic statements (basic_stmt), compound statements

(cmpd_stmt), function definitions (func_def), decorator definitions

(decorator_def), function calls (func_call), or error handling statements.

• If an error occurs during parsing, the error token followed by a newline (T_NL)

triggers error handling actions (yyerrok; yyclearin;).

args and args_list:

• These rules handle function arguments and their lists.

• args represent function arguments and can consist of an identifier followed by an

args_list.

• args_list represents the list of arguments and can consist of a comma-separated

list of identifiers.

call_list:

• Handles the list of arguments in a function call.

• It consists of a comma-separated list of terms.

call_args:

• This rule handles the arguments passed to a function during a function call.

• It can match one of the following patterns:

o If the token is an identifier (T_ID), it adds the identifier to the argument

list and clears the argument list with clearArgsList().

o If the token is a number (T_Number), it adds the number to the argument

list and clears the argument list.

o If the token is a string (T_String), it adds the string to the argument list and

clears the argument list.

o If there are no arguments, it matches an empty rule {}.

func_def:

• This rule represents the definition of a function.

• It starts with the T_Def token followed by the function name (T_ID).

• It then inserts records into the symbol table for the function name and its

definition.

• After that, it expects an opening parenthesis T_OP, followed by function

arguments (args), a closing parenthesis T_CP, a colon T_Cln, and a suite of

statements (start_suite).

• Before parsing the suite of statements, it updates the current scope, initializes a

new symbol table, and then updates the scope again after parsing the suite.

decorator_def:

• This rule handles the definition of a decorator.

• It begins with the T_Decorator token followed by the decorator name (T_ID).

• Then, it inserts records for the decorator name and its definition into the symbol

table.

• After that, it expects a newline (T_NL) followed by a function definition

(func_def).

func_call:

• This rule defines a function call.

• It starts with the function name (T_ID), followed by an opening parenthesis T_OP,

the function arguments (call_args), and finally a closing parenthesis T_CP.

This section defines the grammar rules using yacc syntax. Each rule specifies how higher-

level constructs are formed from lower-level constructs. The %% separates the grammar

rules from the C code. The yyerror function handles syntax errors encountered during

parsing. The main function initiates the parsing process using yyparse.

Indent Depth Calculation

This function calculates the depth of indentation based on the number of tabs (\t)

encountered. It returns the count of tabs plus one (for one-based indexing). It is used for

indentation-related tokenization.

Indentation Handling Rules

This rule handles indentation in our programming language. It calculates the depth of

indentation based on the number of tabs (\t) encountered. If the calculated depth is less

than the top of the stack, it pops elements until the depth becomes equal to or less than

the top. It returns different tokens (DD, ND, ID) based on indentation depth.

Symbol Table Helper Functions and Utility Definitions

1. addToList: Appends a new value to a list. It takes a string newVal and a flag

indicating whether to append the value or replace the existing list.

2. clearArgsList: Clears the contents of the argument list.

3. updateCScope: Updates the current scope based on the input parameter scope. If

scope is -1, it resets the scope to 1; otherwise, it increments the current scope by

scope_Count.

4. resetDepth: Resets the depth of a data structure, ensuring that it's empty.

5. scopeBasedTableSearch: Searches for a symbol table based on the scope provided

as input. Returns the index of the symbol table if found, otherwise -1.

6. initNewTable: Initializes a new symbol table. It increments the symbol table index

(sIndex), sets various attributes like scope, parent, and allocates memory for

elements.

7. findRecord: Searches for a record with the given name, type, and scope in the

symbol table.

8. createID_Const: Creates a new identifier constant with the given value, type, and

scope.

9. searchRecordInScope: Searches for a record within a specific scope in the symbol

table.

10. insertRecord: Inserts a new record with the given type, name, line number, and

scope into the symbol table.

11. checkList: Checks if a given name is present in a list within the specified scope. It's

used to validate whether an identifier is indexable.

__

B. Show that this parser correctly parses the input token generated by your lexical
analyser for any program written in your programming language as well as identifies
errors.

A Yacc-generated parser is a parser automatically generated based on a formal grammar

specification provided by the user. Utilizing bottom-up parsing techniques like LALR (Look-

Ahead Left-to-Right, Rightmost Derivation), these parsers efficiently construct parse trees

by analyzing input tokens according to the grammar rules.

Parsing tables, generated from the grammar specification, guide the parser in determining

appropriate actions, such as shift and reduce operations, during the parsing process. These

parsers can detect syntax errors as well.

When using Yacc, the command yacc generates three primary files: y.tab.c, y.tab.h, and

y.output. y.tab.c contains the C source code for the parser, y.tab.h declares data

structures and function prototypes used by the parser, while y.output provides information

about the grammar and parser states.

The above snippet is produced by y.output file which uses these symbols from symbol table

along with state numbers where they are used.

The y.output file generated by Yacc typically contains detailed information about the

LALR(1) parsing automaton used during the parsing process. This automaton is of the

LALR(1) type, meaning it performs bottom-up parsing while considering one token of

lookahead. The file outlines the states of the LALR(1) automaton, transitions between

states based on input tokens, lookahead symbols triggering transitions, and any conflicts

encountered, such as shift-reduce or reduce-reduce conflicts.

The dot(.) at start of production rule indicates the parsing of current symbol in grammar

and it mentions the shift/reduce conditions alongside the production rules.

Defines the set of terminals

produced by lexical analyzer.
Defines the set of non-terminals

produced by lexical analyzer.

The excerpt from the y.output file

describes State 8 of the LR(1) parsing

automaton, outlining potential

parsing configurations and

productions. Each item signifies a

point in a production where parsing

has progressed. Actions like "shift"

and "reduce" are defined for specific

input tokens (e.g., T_EQL, T_OP),

indicating transitions or reductions

based on grammar rules. References

to other states (e.g., 46, 47, 48, 49)

show possible transitions based on

lookahead symbols.

In the given Yacc output excerpt,

parsing state 112 illustrates the

parser's progress in parsing

arithmetic and boolean

expressions, along with print

statements. Each listed

lookahead token triggers a shift

action, directing the parser to

the next state. For instance,

encountering tokens like T_In or

T_NEQ would shift the parser to

states 72 or 73, respectively.

The excerpt from the y.output file depicts two states of the LR(1) parsing automaton. In

State 152, the parser expects an if statement (if_stmt) followed by a boolean expression

and a colon, with transitions possible upon encountering T_Else or T_Elif. It can also

reduce the if statement rule if neither is present. In State 153, the parser anticipates a

while statement (while_stmt) after encountering T_While, a boolean expression, and a

colon, with a default reduction if no further tokens appear.

In state 154, the parser is processing a function definition (func_def) with encountered

tokens T_Def, T_ID, and T_OP. The current lookahead token is T_OP. At this state, the

parser can shift T_ID to transition to state 175, reduce using rule 105 (args), or proceed to

state 176 to parse additional arguments.

State 161 is associated with the parsing of a decorator_def production, where the parser

expects to encounter a T_Decorator, followed by an T_ID, and then a T_NL token.Following

the dot, the parser expects to transition to the func_def non-terminal. The information

provided indicates that upon encountering a T_Def token, the parser should shift and

move to state 19, while for the func_def non-terminal, it should transition to state 177.

PARSING ERRORS

Sample Error Program

print 1+2

def f1():

 x=5

 while(x<10)

 if(xx==10):

 return x

 return x+2

print(f1()

---------------------------------Parsing Output------------------------

1 Syntax Error at Line 1, Column : 6

T_NL

T_NL

T_NL

3 Syntax Error at Line 4, Column : 13

T_NL

4 T_If T_OP T_xx T_EQ Identifier 'xx' at line 5 Not Declared

T_NL

5 T_x Syntax Error at Line 6, Column : 4

T_NL

T_NL

Syntax Error at Line 8, Column : 10

T_EOF

The above code snippet contains parsing errors such as missing tokens, syntax rule mismatch

and indentation errors. Our parser identifies these errors and generates syntax error stating

line number and column number from yyerror function.

The following parser errors are identified in above code:

In line 1, print statement doesn’t have parenthesis.

In line 4, while statement has missing colon.

In line 5, if statement has a condition where undeclared variable is used.
In line 6, return statement doesn’t follow indentation rules.
In line 8, function call in print statement doesn’t end with parenthesis.

C. Write a simple program in your language with all kinds of tokens and keywords

import math
x=0
y=10
i=0
#Comment1
print(x+y)
lis = [x,y]

StartParse
 |
 |--- T_Import
 | |
 | |--- T_ID
 |
 |--- assign_stmt
 | |
 | |--- T_ID (id='x')
 | |--- T_EQL
 | |--- T_NUMBER (Num=0)
 |
 |--- assign_stmt
 | |
 | |--- T_ID (id='y')
 | |--- T_EQL
 | |--- T_NUMBER (Num=10)
 |
 |--- assign_stmt
 | |
 | |--- T_ID (id='i')
 | |--- T_EQL
 | |--- T_NUMBER (Num=0)
 |
 |--- print_stmt
 | |
 | |--- T_Print
 | |--- T_OP
 | |--- term
 | |
 | |--- T_ID (id='x')
 | |--- T_PL
 | |--- T_ID (id='y')
 | |--- T_CP
 |
 |--- assign_stmt
 | |
 | |--- T_ID (id='lis')
 | |--- T_EQL
 | |--- T_OB
 | |--- elements
 | |--- term[0] (id='x')
 | |--- term[1] (id='y')
 | |--- T_CB

This code contains import keyword, variable declarations, list,

and comments and below is its parse tree.

def F1(A, B, C):
 a=1+x
 while(lis[a]==y):#Comment
 pass
 t=1
 z=10
 b=i
 if(z==b):
 c=10+b
 else:
 c=5+z
 return c

 |--- func_def
 | |
 | |--- T_Def
 | |--- T_ID (id='F1')
 | |--- args
 | |
 | |--- args[0] (id='A')
 | |--- args[1] (id='B')
 | |--- args[2] (id='C')
 | |--- T_Colon
 |
 | |--- body
 | |
 | |--- assign_stmt
 | |
 | |--- T_ID (id='a')
 | |--- T_EQL
 | |--- arith_exp
 | |
 | |--- T_NUMBER (Num=1)
 | |--- T_PL
 | |--- T_ID (id='x')
 | |
 | |--- T_While
 | |
 | |--- bool_exp
 | |
 | |--- T_ID (id='lis')
 | |--- list_index
 | |--- T_ID (id='a')
 | |--- T_EQ
 | |--- T_ID (id='y')
 | |--- body T_Pass
 | |
 | |--- assign_stmt
 | |
 | |--- T_ID (id='z')
 | |--- T_EQL
 | |--- T_NUMBER (Num=10)
 | |
 | |--- assign_stmt

This code snippet includes function, while loop

with list-indexing based condition, if-else

declarations with various levels of indentation

along with pass and return keywords.

 | |
 | |--- T_ID (id='b')
 | |--- T_EQL
 | |--- T_ID (id='i')
 | |
 | |--- if_stmt
 | |
 | |--- T_If
 | |
 | |--- bool_exp
 | |
 | |--- T_ID (id='z')
 | |--- T_EQ
 | |--- T_ID (id='b')
 | |--- T_Colon
 | |--- body
 | |
 | |--- assign_stmt
 | |
 | |--- T_ID (id='c')
 | |--- T_EQL
 | |--- arith_exp
 | |
 | |--- T_NUMBER (Num=10)
 | |--- T_PL
 | |--- T_ID (id='b')
 | |--- T_Else
 | |--- T_Colon
 | |--- body
 | |
 | |--- assign_stmt
 | |
 | |--- T_ID (id='c')
 | |--- T_EQL
 | |--- arith_exp
 | |
 | |--- T_NUMBER (Num=5)
 | |--- T_PL
 | |--- T_ID (id='z')
 | |--- T_Return
 | | |
 | | |--- T_ID (id='c')
 |

@F1
def F2(A):
 x=y+1
 return
m1 = F1(10, 10, 10)
m2 = F2(0, 1, 2)
if(m1==m2):
 print(True)
else:
 print(False)

This code snippet involves decorator declaration and

function calls.

 |--- decorator_def
 | |
 | |--- T_Decorator
 | |--- T_ID (id='F1')
 |
 |--- func_def
 | |
 | |--- T_Def
 | |--- T_ID (id='F2')
 | |--- args
 | |
 | |--- args[0] (id='A')
 | |--- T_Colon
 |
 | |--- body
 | |
 | |--- assign_stmt
 | |
 | |--- T_ID (id='x')
 | |--- T_EQL
 | |--- arith_exp
 | |
 | |--- T_ID(id='y')
 | |--- T_PL
 | |--- T_NUMBER (Num=1)
 | |--- T_Return
 |
 |--- assign_stmt
 | |
 | |--- T_ID (id='m1')
 | |--- T_EQL
 | |
 | |--- func (id='F1')
 | |--- call_args (Num=10, Num=10, Num=10)
 | |
 |--- assign_stmt
 | |
 | |--- T_ID (id='m2')
 | |--- T_EQL
 | |
 | |--- func (id='F2')
 | |--- call_args (Num=0, Num=1, Num=2)
 | |
 |--- T_If
 | |
 | |--- bool_exp
 | |
 | |--- T_ID (id='m1')
 | |--- T_EQ
 | |--- T_ID (id='m2')
 | |--- T_Colon
 | |--- body
 | |
 | |--- print_stmt

 | |
 | |--- T_Print
 | |--- T_OP
 | |--- term
 | |
 | |--- T_True
 | |--- T_CP
 |
 | |--- T_Else
 | |--- T_Colon
 | |--- body
 | |
 | |--- print_stmt
 | |
 | |--- T_Print
 | |--- T_OP
 | |--- term
 | |
 | |--- T_False
 | |--- T_CP

Parser Output as Parsing Table:

 State T_ID T_Def 'T_While … T_EOF StartParse arith_exp term .…
------- ------------ ------------ ------------ -------------- -------------- ------------- ------ ….
 0 1
 1 accept
 2 shift 8 shift 19 shift 17 26 28 24
 3 reduce R9
 4 28
…
 204
 205 shift 19 shift 17 28 24
 206 shift 16
 207 shift 19 shift 17 35
 208 reduce
 R100

The parsing table consists of 44 terminals, 50 non terminals and 160 states. The above

parsing table (contains only few states for illustrative purposes, actual table is too large to

fit in) obtained as parser output is used to efficiently analyse input according to the

grammar rules of a language. It comprises rows representing parser states and columns

representing input symbols. Each entry in the table specifies an action for the parser, such

as shifting input onto a stack, reducing symbols based on grammar rules, or transitioning

to new states. These tables play a critical role in enforcing syntactic correctness and

detecting errors in input streams.

Parser Output as Symbol Table:

The symbol table within a parser stores details such as its name, type, scope, and

declaration. This information is crucial for subsequent compiler phases, including semantic

analysis and code generation, as it aids in resolving symbol references and ensuring

program correctness.

Valid Python Syntax

----------------------------All Symbol Tables----------------------------
 Lexeme Token Declaration Scope
Scope : 1
1 math PackageName 1 (1)
1 0 Constant 2 (1)
1 x Identifier 2 (1)
1 y Identifier 3 (1)
1 10 Constant 3 (1)
1 i Identifier 4 (1)
1 lis ListTypeID 7 (1)
1 F1 Func_Name 9 (1)
1 Def Def 9 (1)
1 F1 DecoratorName23 (1)
1 DecoratorDecorator 23 (1)
1 F2 Func_Name 24 (1)
1 m1 Identifier 30 (1)
1 1 Constant 31 (1)
1 2 Constant 31 (1)
1 m2 Identifier 31 (1)
1 If-Elif If-Elif 32 (1)
1 True Constant 33 (1)
1 Else Else 34 (1)
1 False Constant 35 (1)

Scope : 2
2 1 Constant 10 (2)
2 a Identifier 10 (2)
2 While While 11 (2)
2 Pass Pass 12 (2)
2 t Identifier 13 (2)
2 10 Constant 14 (2)
2 z Identifier 14 (2)
2 b Identifier 15 (2)
2 return return 16 (2)
2 c Identifier 17 (2)
2 If-Elif If-Elif 18 (2)
2 5 Constant 19 (2)
2 Else Else 20 (2)

Scope : 3
3 x Identifier 25 (3)
3 1 Constant 25 (3)
3 return return 26 (3)

The scope defines the level of depth for indentation purposes.

