
NATIONAL INSTITUTE OF TECHNOLOGY,
TIRUCHIRAPPALLI

CSPC62

COMPILER DESIGN

TOPIC: Python Compiler

DONE BY:

S.No Name RollNo

1 Gokul Adethya T 106121045

2 Raghavan Balanathan 106121099

3 Srinivasa Raghavan P 106121129

LAB REPORT-1

Subtopic: Lexical Analyzer

A. Develop the components of your programming language.

B. Write regex for each of them and draw the corresponding DFA.

C. Write Lex code implementing the patterns and corresponding actions.

D. Write codes for handling errors during lexical analysis.

E. Compile the Lex code and create your own lexical analyser (L).

F. Write small programs in the language you have developed.

G. Compile your programs and show that your lexical analyser is creating correct
tokens and handling errors correctly.

__

A. Develop the components of your programming language.

We define the following components for our Python-like language: -

Data Types: Data types specify the type that can be used in a programming
language. Common data types include integers, floating-point numbers,
characters, strings, arrays, and more complex types like structures and objects.

Variables: Variables are used to store data temporarily during the execution of a
program. They have a name and a data type and can hold different values at
different times during program execution.

Operators: Operators are symbols or keywords that perform operations on
operands. They include arithmetic operators (+, -, *, /), relational operators (==,
!=, <, >), logical operators (and, or, not), and others.

Control Structures: Control structures dictate the flow of execution within a
program. They include conditional statements (if-else), loops (for, while), and
branching statements (break, continue, return).

Functions/Methods: Functions or methods are blocks of code that perform a
specific task. They allow for code reuse and modular programming. Functions
typically accept input parameters, perform operations, and may return a result.

C. Write Lex code implementing the patterns and corresponding actions.

This section defines rules for matching keywords, operators, literals, etc., and
assigns corresponding tokens. These rules match the newline characters, reset the
column count, print debug information, and return the newline token and marks
the end of the Flex rules section.

D. Write codes for handling errors during lexical analysis.

Lexical errors refer to mistakes or issues in the lexical analysis phase of a compiler
or interpreter, where the input text is broken down into tokens. These errors occur
when the lexer (often generated by tools like Lex) encounters input that does not
conform to the defined grammar or rules of the language.

Some examples of lexical errors include:

• Invalid characters: Characters that are not recognized by the lexer or are
not allowed in the language.

• Illegal token sequences: Sequences of characters that do not form valid
tokens in the language.

• We impose restrictions on identifier length (256) and exceeding those limits
could lead to a lexical error.

• Numeric format errors: Incorrectly formatted numbers, such as
"123.456.789".

When lexical errors are encountered, the lexer typically raises an error to indicate
the issue. In Lex (or similar lexer generators), the yyerror function is often used to
report errors.

E. Compile the Lex code and create your own lexical analyser (L).

Above lex code uses reserved keywords to give priority over identifiers. The debug
function is used for debugging purposes, specifically to print information about the
tokens encountered during the lexing process and returns the corresponding token
identifier for the parser.

Basic punctuations, arithmetic, logical and relational operators have been
implemented in our lexer.

Above lex snippet explains regex rules for integer and floating-point numbers,
identifier, strings, comments, and whitespaces.

F. Write small programs in the language you have developed.

INPUT:

import hWorld

x=10

y=5

#Comment1

print(x+y)

def F1():
 while(x==y):
 c=0

 z=10

 b=z

 if(z!=b):
 c=10+b

 else:
 c=10+z

OUTPUT:

G. Compile your programs and show that your lexical analyser is creating correct
tokens and handling errors correctly.

INPUT1 (Variable Declaration – should start with alphabet):

import math
#comment1
x=10
2dfd=0

OUTPUT1

1 T_IMPT T_math T_NL
2 T_NL
3 T_X T_Assign T_10 T_NL
4 T_2 T_dfd
Syntax Error at Line 4, Column : 4

INPUT2 (Variable Length Limit – max 256):

import math
#comment1
sdggg
gg
gggggggggggggggggggggggggggggggg=10
dfd=0

OUTPUT2

---------------------------------Token Sequence--------------------------
1 T_IMPT T_math T_NL
2 T_NL
3 Max length crossed:
sdggg
gg
gggggggggggggggggggggggggggggggg, Length: 28%

INPUT3 (Number format):

import math
#comment1
df=10.1.2
2dfd=0

OUTPUT3

---------------------------------Token Sequence--------------------------
1 T_IMPT T_math T_NL
2 T_NL
3 T_df T_Assign T_10 .T_1
Syntax Error at Line 3, Column : 7

