
LAB REPORT-4

Subtopic: Intermediate Code Generation

A) Write SDT for generating proper Three-Address Codes for your grammar.

B) Apply backpatching to give the destination address of jump statements correctly.

C) Show that for any types of arbitrary blocks of codes containing all types of statements
(expressions, control flow, relational operator, array, function call, etc.) written in your
programming language, your compiler can generate the appropriate three address codes.

D) Draw the annotated parse trees with the semantic translations and DAGs for the sample
programs of C).

A) Write syntax directed translations for generating proper Three-Address
Codes for your grammar.

The makeQ function plays a crucial role in constructing quadruples for intermediate code

generation. It dynamically allocates memory for each component (R, A1, A2, Op) and assigns

provided values, ensuring coherence and sequentially in quadruple generation. This pivotal

functionality facilitates subsequent optimization and translation stages in the compilation

process.

The makeStr function is crucial in code generation tasks, particularly in creating unique

identifiers for temporary variables and labels. When generating code for complex

expressions or control flow structures like loops and conditionals, temporary variables and

labels are often needed. These identifiers ensure that each variable or label is distinct

within the generated code. The function dynamically constructs a string representation by

accepting an integer input (no) and a flag (flag). When the flag is set to 1, indicating the

need for a temporary variable, the function prefixes the string with 'T'. Conversely, when

the flag is 0, it prefixes the string with 'L' to signify a label. For example, if no is 3 and the

flag is 1, the function would return "T3". If the flag is 0 instead, it would return "L3". These

generated strings can then be used as identifiers within the generated code, ensuring

uniqueness and clarity in the resulting codebase.

The codeGenOp function is central to the code generation process, traversing the abstract

syntax tree (AST) and producing intermediate code based on node properties. It generates

assignments for identifiers or constants, constructs quadruples for assignments, and handles

conditional statements by generating code for condition evaluation, branching, and label

creation. This facilitates accurate translation of high-level conditionals into executable

intermediate code. It handles various control flow structures: for "If" statements, it

recursively generates code for the "If-Elif" block.

It handles various control flow structures: for "Else" statements, it recursively generates

code for the "Else" block; for "While" loops, it generates code for loop initiation, condition

evaluation, and looping; for "Next" and "BeginBlock" statements, it generates code for their

contents recursively. Finally, for "EndBlock" statements, it handles different cases based on

the number of operands, generating code recursively for nested blocks.

The code recursively generates intermediate code for expressions or statements separated

by newline nodes. For assignment nodes, it creates quadruples to assign the right-hand side

value to the left-hand side variable. When encountering a function name node, it prints

"Begin Function" followed by the function name, processes the function's body recursively,

and prints "End Function", creating corresponding quadruples. For function call nodes, it

handles parameter passing, prints statements indicating parameter count and the function

call, and creates appropriate quadruples.

B) Apply the concept of backpatching to give the destination address of
jump statements correctly.

Backpatching is a vital technique in compiler design for managing code generation in the

presence of conditional expressions and loops. It operates by maintaining True Lists and

False Lists during parsing or intermediate code generation, which store the addresses where

conditions evaluate to true or false, respectively. As code is generated, placeholders are

inserted where jumps or branches are to occur, and target addresses are recorded. During

backpatching, these placeholders are replaced with the actual target addresses based on

the evaluated conditions, ensuring correct control flow.

Merge is the process of combining True Lists or False Lists from different expressions or

code blocks. For example, when encountering logical operators like AND or OR, the True

Lists or False Lists of the operands need to be merged appropriately to get the correct

result. initializeList initializes a list with an initial capacity of 10. addToTrueList and

addToFalseList add a quadruple index to the true and false lists, respectively, dynamically

resizing the array if needed. merge merges two lists into a single list. These functions are

used to manage true and false lists, which are essential for handling conditional expressions

during code generation.

C) Show that for any types of arbitrary blocks of codes containing all types
of statements (expressions, control flow, relational operator, array,
function call, etc.) written in your programming language, your compiler
is able to generate the appropriate three address codes.

Input:

import math

x=1.543

y=-2.7

z=3

i=(x+10)*2.5-y/z*x

def f1(x,y,i):

 while(x<y):

 x=y

 y=x

 if(i=='+'):

 x+y

 elif(i=='-'):

 x-y

 elif(i=='-'):

 x-y

 elif(i=='-'):

 x-y

 else:

 x*y

 return

x1 = f1(x,10,'+')

x2 = f1(x1,2.5,'*')

x3 = f1(z,x,'*')

x4 = f1(y,x3,'/')

i = f1(x2, x4, '-')

3 address code:

import math

T2 = 1.543

x = T2

T5 = 2.7

T6 = - T5

y = T6

T9 = 3

z = T9

T12 = x

T13 = 10

T14 = T12 + T13

T15 = 2.5

T16 = T14 * T15

T17 = y

T18 = z

T19 = T17 / T18

T20 = x

T21 = T19 * T20

T22 = T16 - T21

i = T22

Begin Function f1

T26 = x

T27 = y

T28 = T26 < T27

L0: If False T28 goto L1

T29 = y

x = T29

T32 = x

y = T32

T35 = i

T36 = '+'

T37 = T35 == T36

If False T37 goto L2

T38 = x

T39 = y

T40 = T38 + T39

goto L3

L2: T43 = i

T44 = '-'

T45 = T43 == T44

If False T45 goto L2

T46 = x

T47 = y

T48 = T46 - T47

goto L3

L2: T51 = i

T52 = '-'

T53 = T51 == T52

If False T53 goto L2

T54 = x

T55 = y

T56 = T54 - T55

goto L3

L2: T59 = i

T60 = '-'

T61 = T59 == T60

If False T61 goto L2

T62 = x

T63 = y

T64 = T62 - T63

goto L3

L2: T67 = x

T68 = y

T69 = T67 * T68

return

L3: L3: L3: L3: goto L0

L1: End Function f1

Push Param x

Push Param x

Push Param 10

(T91)Call Function f1, 3

Pop Params for Function f1, 3

x1 = T91

Push Param x1

Push Param x1

Push Param 2.5

(T98)Call Function f1, 3

Pop Params for Function f1, 3

x2 = T98

Push Param z

Push Param z

Push Param x

(T105)Call Function f1, 3

Pop Params for Function f1, 3

x3 = T105

Push Param y

Push Param y

Push Param x3

(T112)Call Function f1, 3

Pop Params for Function f1, 3

x4 = T112

Push Param x2

Push Param x2

Push Param x4

(T119)Call Function f1, 3

Pop Params for Function f1, 3

i = T119

--------------------------------All Quads---------------------------------

I OP A1 A2 R

0 import math - -

1 = 1.543 - T2

2 = T2 - x

3 = 2.7 - T5

4 - T5 - T6

5 = T6 - y

6 = 3 - T9

7 = T9 - z

8 = x - T12

9 = 10 - T13

10 + T12 T13 T14

11 = 2.5 - T15

12 * T14 T15 T16

13 = y - T17

14 = z - T18

15 / T17 T18 T19

16 = x - T20

17 * T19 T20 T21

18 - T16 T21 T22

19 = T22 - i

20 BeginF f1 - -

21 = x - T26

22 = y - T27

23 < T26 T27 T28

24 Label - - L0

25 If False T28 - L1

26 = y - T29

27 = T29 - x

28 = x - T32

29 = T32 - y

30 = i - T35

31 = '+' - T36

32 == T35 T36 T37

33 If False T37 - L2

34 = x - T38

35 = y - T39

36 + T38 T39 T40

37 goto - - L3

38 Label - - L2

39 = i - T43

40 = '-' - T44

41 == T43 T44 T45

42 If False T45 - L2

43 = x - T46

44 = y - T47

45 - T46 T47 T48

46 goto - - L3

47 Label - - L2

48 = i - T51

49 = '-' - T52

50 == T51 T52 T53

51 If False T53 - L2

52 = x - T54

53 = y - T55

54 - T54 T55 T56

55 goto - - L3

56 Label - - L2

57 = i - T59

58 = '-' - T60

59 == T59 T60 T61

60 If False T61 - L2

61 = x - T62

62 = y - T63

63 - T62 T63 T64

64 goto - - L3

65 Label - - L2

66 = x - T67

67 = y - T68

68 * T67 T68 T69

69 return - - -

70 Label - - L3

71 Label - - L3

72 Label - - L3

73 Label - - L3

74 goto - - L0

75 Label - - L1

76 EndF f1 - -

77 Param x - -

78 Param x - -

79 Param 10 - -

80 Call f1 3 T91

81 = T91 - x1

82 Param x1 - -

83 Param x1 - -

84 Param 2.5 - -

85 Call f1 3 T98

86 = T98 - x2

87 Param z - -

88 Param z - -

89 Param x - -

90 Call f1 3 T105

91 = T105 - x3

92 Param y - -

93 Param y - -

94 Param x3 - -

95 Call f1 3 T112

96 = T112 - x4

97 Param x2 - -

98 Param x2 - -

99 Param x4 - -

100 Call f1 3 T119

101 = T119 - i

--

