
CSPC62 - Compiler Design
Python compiler

GOKUL ADETHYA T - 106121045
RAGHAVAN BALANATHAN - 106121099
SRINIVASA RAGHAVAN P - 106121129



QUICK SORT ALGORITHM



LEXICAL
ANALYSIS



LEXICAL ERROR ANALYSIS

● Characters that are not recognized by the lexer or are not allowed in the language. 
● Sequences of characters that do not form valid tokens in the language. 
● Incorrectly formatted numbers, such as "123.456.789”



Symbol Table 



Indentation

Calculates the depth of indentation 
based on the number of tabs (\t) 

encountered.



Parser

YACC Rules for arithmetic expressions



Parser

YACC Rules for assignment expressions



Parser

YACC Rules for if-elif-else, while expressions



Parser

YACC Rules for function definitions and 
function call



Parsing error analysis



Parse 
Tree for 

Quicksort 
Algorithm



Semantic Analysis

Each production rule defines actions associated 
with constructing an annotated parse tree. 

The rule handles assignment statements. The 
actions include inserting records into a symbol 
table, creating nodes in the parse tree to 
represent assignments, and updating associated 
values in the symbol table.



Semantic error analysis

Our parser detects two main categories of semantic errors during compilation: 
• undeclared variables (line 4) and 
• reserved identifier misuse (line 3). 



Syntax 
Tree for 

Quicksort 
Algorithm



Intermediate Code Generation



BackPatching

Backpatching manages the presence 
of conditional expressions and 
loops. 

It operates by maintaining True 
Lists and False Lists during parsing 
or intermediate code generation, 
which store the addresses where 
conditions evaluate to true or false.



3 address 
codes - 

Quadruples
For Quicksort



Basic Blocks - 
For Quicksort 
recursive call



Control 
Flow 
Graph for 
Quicksort



DAG for 
Quicksort 

Recursive call



Code optimization





Copy 
propagation 
with 
induction 
variable 
elimination





Constant 
folding with 
copy 
propagation



Dead Code Elimination with 
Peephole Optimization



Features implemented in our compiler

● Lexical analysis 
○ Token identification
○ Lexical error detection
○ Symbol Table

● Parser
○ Syntax declaration
○ Indentation and syntactic error detection
○ Parse Tree 
○ Abstract Syntax Tree

● Semantic Analysis
○ SDD + SDT
○ Annotated Parse Tree
○ Semantic Error detection



Features implemented in our compiler

● ICG

○ 3 address code - Quadruples

○ Backpatching

● Code Optimization

○ Basic blocks

○ DAG, CFG

○ Constant Folding + Copy Propagation

○ Dead Code Elimination

○ Peephole Optimization


